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Critical Behavior of the Correlation Function of 
a Coulombic Fluid ~ 

Magdalene Medina Noyola 2,a and Donald A. McQuarrie 2 

Received August 11, 1977; revised October 20, 1977 

An extension of the Ornstein-Zernike theory of critical scattering by a 
simple fluid to include a type of coulombic system is suggested. The 
relation between the oscillations of the charge distribution predicted by 
the second moment condition of Stillinger and Lovett in the restricted 
primitive model and the critical behavior of the correlation function is 
also discussed. 
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1. I N T R O D U C T I O N  

Cer ta in  evidence has recent ly been given (1~ on  the existence of  a cri t ical  

po in t  in the res t r ic ted pr imi t ive  mode l  ( R P M )  of  an ionic  solut ion.  The 
existence of  this cri t ical  po in t  has  been shown th rough  app rox ima te  and  
Mon te  Car lo  calcula t ions  of  the equa t ion  o f  state. ~1~ One wonders  if it is 
poss ible  to relate such a cri t ical  behav ior  with a co r re spond ing  long-range  
behav ior  of  the cor re la t ion  funct ion in an Orns t e in -Ze rn ike  f a s h i o n - - i n  
o ther  words,  if  it is poss ible  to set up a hypothesis ,  adequa te  for  Cou lombic  
systems, co r re spond ing  to the ma in  hypothes is  of  the (simple fluid) 
Orns t e in -Ze rn ike  theory.  

In  this paper ,  we cons ider  one poss ib i l i ty  for  such a hypothes is  which 
seems, at  least,  r easonable  and  which provides  a qual i ta t ive  picture of  the 
cri t ical  behav ior  in this type o f  system. 
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Upon introducing the matrices H and C defined as 

Hu(r )  = (p~pj)ll2hu(r), Cu(r ) = (p~pj)l/2cu(r), i , j  = 1, 2 (1) 

we obtain the Ornstein-Zernike (OZ) equation for a multicomponent system 
in the form 

C(r)  + f C ( r ' ) H ( l r  - r ' [)  d3r ' (2) H ( r )  

Let us consider only systems of particles interacting via a potential of  
the form 

u~j(r) = uS(r) + q~qj/~r, i , j  = 1, 2 (3) 

where u s is a strictly short-ranged term (the RPM uses a hard-sphere poten- 
tial for u~). We now set up the main hypothesis of the OZ theory for this 
type of Coulombic system by assuming that: cu(r ) = -[3q~qs/r + su(r), 
where su(r ) is short-ranged at, and near, the critical point. 

Let us introduce now the matrices R and E defined as 

R~j =- (p~pj)z/2, E u = q~qjR~, i , j  = 1, 2 (4) 

Since we suppose overall electroneutrality, ~ =  1 p~q~ = O, R and E satisfy 
the following relations: 

E R  = R E  = 0 

R R  = pR 

E E  = ~E 

I f  we now define the "par t ic le"  

(P- ~1;') 

(~--- __~lP,q,2) 
correlation function h~(r) with 

(5) 
(6) 

(7) 

its 
corresponding direct correlation function c~(r) as 

hS(r) = �89 + h12(r)], c~(r) = �89 + c12(r)] (8) 

and the " cha rge"  correlation function ha(r) with its corresponding direct 
correlation function ca(r) as 

1 I 
ha(r) = ~ 5  [hll(r) - h12(r)], ca(r) = ~ [ell(r) - c12(r)] (9) 

then we can write H and C as 

H ( r )  = hS(r)R + ha(r)E (lOa) 

C(r )  = c~(r)R + c"(r )E (10b) 



Critical Behavior of the Correlation Function of a Coulombic Fluid 447 

By using Eqs. (10), along with Eqs. (5)-(7), we can write the OZ equation 
in two separate (but coupled, in general) OZ integral equations, one involving 
h s and c ~, and the other involving h a and ca: 

h~(r) = cS(r) + O f  c~(r')h~(lr - r ' l ) d 3 r '  (11) 

= ca(r) + ~ f  ca(r')h~(lr - r'j)d~r ' (12) ha(r) 

Let us now write the OZ integral equation [Eqs. (10a), (11), and (12)] 
in Fourier space, where we now have 

d~(k) R + da(k) E (t3) 
/4(k) = 1 - pd~(k) 1 - ~,d~(k) 

with 

C(k) = d~(k)R + da(k)E (14) 

According to our above OZ assumption, we also have 

C(k) = - (4~-/3/E)(1/k2)E + ~q(k) (15) 

where 

S~j(r ) = (p~pj)l/2s~j(r ) (16) 

Also, with the notation of Eqs. (8) and (15), we have 

S(k)  = d~(k)R + Ida(k) + ---~- k-241rfl 1 IE  (17) 

Thus, our main hypothesis can also be stated as: (~(k) is a meromorphic 
function in k 2, with -(4~rfi/E)(1/k2)E as its only singular term at k 2 = 0. 
Or, in other words, S(k) is analytic in a neighborhood of k 2 =  0 and 
consequently ds(k) and de(k) can be expanded in a Taylor series around 
k 2 = 0: 

d~(k) = Co ~ + c2k2 + ..., de(k) = do e + dlek 2 + ... (t8) 

where de(k) is defined as 

de(k) =- da(k) + (4~rfl/e)(1/k ~) (19) 

We now eliminate the function d a (which is singular at k = 0) from 
Eq. (13) in favor of the function d e (which, according to our hypothesis, is 
analytic at k = 0), thus obtaining 

H(k)  = M k ) R  + ha(k)E 

d~(k) - (4~r/ ,kT)  + kZd~(k) _ (20) 
- 1 - p d s ( ~ ) R  + Ks + [1 - - r  e 

where K s = ( 4 , ~ / ~ k T ) 7 .  
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From this equation and from our main hypothesis it is already obvious 
that if any long-range behavior is expected in H ( r )  it should be related to 
the approach to the origin k = 0 of a pole of/~s(k) since the other term in 
Eq. (20), /~(k), does not have such a possibility, except in the trivial case 
x = 0 ( T =  oo). 

Let us now complete the analogy with the simple fluid case by expanding 
6 * and ~ in their Taylor series. Since, as far as the critical behavior is con- 
cerned, we are interested not in h ~ or h ~ in particular but in H ( r ) ,  we perform 
the sum in Eq. (20) and keep only the lowest approximation, i.e., we neglect 
terms of order k a in the denominator of H ( k )  [thus excluding, as in the 
simple fluid case, any oscillatory behavior for H(r)] .  Thus, we get 

(x2coS)R - [(4rr/ekr)(1 - pc0~)]E + O(k  2) (k--+ O) 
H ( k )  ,~ K2(1 _ pcoS ) + [(1 - pCoS)(1 - yCo e) - K2pcaS]k 2 

(21) 

or, by Fourier-transforming and returning to our original notation, 

(1/4~r)K~Co s - (q, qj /ekT)(1 - pCo ~) e -"r (r ~ oo) (22) 
h~j(r) ,~ (1 - pc0S)(1 - 7co e) - K2pcl ~ r 

where 

K~(1 - -  pCo9 ( 2 3 )  
~z = (1 - OCo9(1 - 7 c o 9  - K~ocl s 

On the other hand, the compressibility equation for multicomponent 
systems reads 

~p(Op/Op) = p - ~ p~p, j c,y(r) dar (24) 

or, by using Eqs. (1) and (10b) along with the electroneutrality condition 
p~q~ = 0, 

5 ( a p / a e )  = 1 - pc0 ~ ( 2 5 )  

In the approach to the critical point, characterized by the divergence of the 
compressibility, i.e., by the limit/9(0p/0p) -+ 0, we have that Eq. (22) becomes 

h~j(r) --+ [c0S/(- 4=pclS)]e-~r/r (26) 

= [(I - p~og/(-oc,gF = (27) 

with a striking resemblance to the simple fluid case. The identification of the 
correlation length ~: with =-* gives again the critical exponents relation 
2v -- y. Thus, the analogy has been completed. 

Some comments are in order with respect to the extension of the 
Ornstein-Zernike theory just presented. First of all, our hypothesis so far 
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does not have any formal justification, and so we take it literally as a hypoth- 
esis. However, this hypothesis has proved to be a useful one in the respect 
that we have just employed it, and, as we will see below, it provides a general 
scheme in which some particular, but important,  approximate theories of  
ionic solutions fall. Let us mention that the conditions stated by our hypoth- 
esis imply the second moment  condition of Stillinger and Lovett, ~2~ since 
from Eq. (18) we have that 

lim k2d ~ (k) = 0 (28) 
k--*0 

which is a sufficient condition for the Stillinger-Lovett moment  condition 
to be satisfiedJ 3~ 

The second moment  condition predicts that for values of  K above a 
certain value K0, the "cha rge"  correlation function M(r)  will show oscilla- 
tions. However, since in the approach to the critical point the asymptotic 
form of hu(r ) is dominated by the hS(r) term, as was shown above, we con- 
clude that there is not any direct relation between the mentioned oscillations 
and the critical behavior. 

Let us discuss now how some well-known approximate theories of  
ionic solutions that satisfy our main hypothesis fit into this scheme. 

First we consider the mean spherical approximation (MSA), (4~ whose 
defining equations for the restricted primitive model are 

cu(r ) = -f iq~q/Er,  r > R (29) 

hu(r ) = - 1 ,  r < R (30) 

which complement the OZ integral equation. Since this approximation can 
be solved analytically, we have analytic expressions for c ~ and c ~. The above 
equations for cu(r) and hu(r ) can be written as 

ca(r) = O, r > R (31) 
hS(r) = - 1 ,  r < R 

c~(r) = - f i l e r ,  r > R 
M(r )  = O, r < R (32) 

and so, Eq. (11), complemented with Eq. (31), becomes the OZ equation 
for a hard sphere (" reference") system in the mean spherical (Percus-Yevick) 
approximation. The quantity 1 - pCo ~ will then be the same as 1 - pCo 
for the "reference"  system: 

1 - pCo ~ = (1 - pCo) Hs~PY~ (33) 

and so there is no possibility for 1 - peo ~ to be zero, or, in other words, no 
critical point can be observed in the correlation function of the restricted 
primitive model in this approximation. {However, we must notice that if 
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f l(@/~p) for the restricted primitive model is evaluated through the energy, 
instead of the compressibility equation, the result is (4~ 

f l(@/~p) = fl(@/Op) ~s + fl A(@/~p) (34) 

where 

8~rR3p 1 - (1 + + (1 + 2x)  1/~ (35) 

with x = KR and now fi(Sp/~p) can be zero for certain values of  T and p 
(T*  = EkTR/q 2 = 78.5 • 10 -3 , p* = R3p = 1.4 • 10-2); in fact this was 
one of the ways by which the critical point was first detected(l~.} 

Another approximation closely related to the one just discussed is the 
so-called generalized mean spherical approximation, (5~ which is defined by 
the "boundary  condit ions" 

c~j(r) = -f lq~q/Er + K e - ~ / r ,  r > R (36) 
hu(r ) = - 1 ,  r < R 

where K and z are parameters determined by the requirement of  thermo- 
dynamic consistency. One of the equations of consistency is precisely (5~ 

fl{~p~aMSA \ S p ]  = 1 - pCoS(K, z, p) (37) 

along with the prescription that the left-hand side of this equation be given 
by the corresponding quantity in the mean spherical approximation obtained 
via the energy equation, i.e., by Eq. (34). Thus, with respect to the critical 
behavior, the result of this approximation is only to "legit imize" the critical 
point that already appeared in the thermodynamics of the mean spherical 
approximation, and to force it to appear also in the correlation functions. 
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